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Abstract
We consider formal integrals of motion in 2D Hamiltonian dynamical systems,
calculated with the normal form method of Giorgilli (1979 Comput. Phys.
Commun. 16 331). Three different non-integrable and one integrable systems
are considered. The time variation DI of the formal integral I is found as a
function of the order of truncation N of the integral series. An optimal order
of truncation is found from the minima of the variations DI. The level lines of
the integral I, representing theoretical invariant curves on a Poincaré surface of
section, are compared with the real invariant curves. When chaos is limited,
excellent agreement is found between the theoretical and the real invariant
curves, if the order of truncation is close to the optimal order. The agreement
is poor (a) far from the optimal order and (b) when chaos is pronounced.
The optimal order, calculated as a function of the distance R from the origin,
decreases when R increases. The decrease is rather smooth in the 1:1 resonance,
but it has abrupt steps in the case of a higher order (4:3) resonance. In the case
of an integrable Hamiltonian, a formal integral IF is found which is a function
of the exact integral I and of the Hamiltonian, given as power series of the
canonical variables. The series converges only within a domain of convergence.
The radius of convergence along a particular direction is calculated with the
d’Alembert and Cauchy methods. The theoretical invariant curves agree with
the real invariant curves only within the domain of convergence of IF. In the case
of non-integrable Hamiltonians, we calculate ‘pseudo-radii of convergence’
that tend to zero as the order of truncation N increases.

PACS numbers: 05.45.−a, 45.10.−b

1. Introduction

Formal expansions of first integrals for Hamiltonian systems in the neighbourhood of an elliptic
equilibrium were first introduced by Whittaker (1916, 1937), Cherry (1924a, b) and Birkhoff
(1927). However, the question concerning the convergence of the formal expansion was left
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unsettled by these authors. A result stating that divergence generically occurs was proved by
Siegel (1941). On the other hand, Littlewood (1959a, b) exploited the asymptotic character of
the formal expansions in order to prove a stability result over very long times for the Lagrangian
points in the restricted problem of three bodies. Contopoulos (1960) introduced the formal
expansion of first integrals in the study of galactic models, and wrote the first implementation of
a computer program that could perform the formal expansions (Contopoulos and Moutsoulas
1965). Similar programs were later implemented, using different algorithms, by Gustavson
(1966) and by Giorgilli (1979). Many applications of these quantities have been given over
the years. Furthermore, a recent renewal of interest is due to the applications to self-consistent
galactic models generated by N-body simulations (Contopoulos et al 2000) and to the search
for realistic stability results for the Trojan asteroids (Giorgilli et al 1989, Celletti and Giorgilli
1991, Giorgilli and Skokos 1997, Skokos and Dokoumetzidis 2001).

The interest for applications has also renewed the interest for the problem of investigating
the limit of validity of the formal expansions of first integrals. For, it has been remarked by
Gustavson (1966) that the functions obtained by truncating the formal series at some low order
may reproduce quite well the orbits of the system in some ordered regions of the phase space.
On the other hand, Roels and Hénon (1967) with a careful investigation produced evidence
of the asymptotic character of the formal expansions for an area preserving mapping. More
recently, Kaluza and Robnik (1992) calculated the second integral of motion of the Hénon and
Heiles system (1964) up to terms of degree 14, and found an apparently good convergence.

Now, the main purpose of this paper is precisely to investigate the usefulness of the formal
series expansions of first integrals as due to the apparent convergence caused by the asymptotic
behaviour of the series. Precisely, by truncating the series expansion of the first integral to
different orders, we produce numerical evidence of the existence of an optimal order where
the variation of the truncated integral along particular orbits of the system is minimal. For
lower and higher order truncations, the variations of the truncated integrals are larger, and the
series turn out to be typically divergent if one lets the truncation order go to infinity; this is in
agreement with the theorem of Siegel.

The existence of an optimal truncation order may be understood in the framework of
Nekhoroshev’s theory (Nekhoroshev 1977). An analytical estimate of the best order of
truncation in the case of an elliptic equilibrium may be found in Giorgilli (1988). Let us
assume that the harmonic frequencies (ω1, . . . , ωn) of the linearized unperturbed system
satisfy a diophantine condition

|m1ω1 + · · · + mnωn| >
K

|m|τ (1)

for some constants τ � n − 1 and K > 0 and for all non-zero integer vectors m =
(m1, . . . ,mn), where |m| = |m1| + · · · + |mn|. Consider a ball of radius R centred at the
origin of R2n. Then an estimate of the optimal order N of truncation of the formal series is
given by

log N � − 1

τ
log

(
R

R∗

)
(2)

where R∗ is a constant depending on K, the number n of degrees of freedom and the size of
the non-linear coupling term. We emphasize that according to the latter formula the optimal
order N is expected to decrease when the radius R of the domain is increased.

Now, the estimate of equation (2) relies on some upper bound estimates on the coefficients
of the series, and cannot capture all details of the dependence of N on R. The stronger
reason is that the diophantine estimate (1) is just a uniform lower bound on the smallness
of |m1ω1 + · · · + mnωn|—the so-called small divisors—which applies to most real vectors ω
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(in measure sense), but veils the fact that very small divisors are quite rare. Moreover, in
the case of resonant frequencies, i.e., frequencies ω satisfying m1ω1 + · · · + mnωn = 0 for
some integer vector m, the diophantine condition must be replaced by a weaker one, and
the construction of formal integrals must be performed by taking into account the resonance:
see for instance Contopoulos (1963), Gustavson (1966) or Giorgilli and Galgani (1978). In
particular, if one considers a resonant case of two degrees of freedom, then the two frequencies
are multiples of a given non-zero quantity, so that the expression |m1ω1 +m2ω2| is either zero or
bounded from below by a constant. Thus, no small divisors appear in the perturbation series
for the first integral. Nevertheless, the theorem of Siegel still applies, and the divergence
seems to be due to the fast increase of the coefficients generated by the formal algorithm of
construction of the series. The theoretical estimates for this case are still expressed by (2),
with τ = 1. We conclude that the details of the dependence of the optimal order of truncation
N on the size R of the domain can be only determined via numerical investigations.

In this paper we perform a series of experiments for 2D non-linear Hamiltonian systems
in the neighbourhood of an elliptic equilibrium, and for two different resonances, namely: (a)
ω1:ω2 = 1:1 and (b) ω1:ω2 = 4:3. All systems considered are of the form

H ≡ 1
2 (ẋ2 + ẏ2 + Ax2 + By2) + H1 (3)

where H1 is a polynomial of degree at least 3.
In section 2 we consider the Hamiltonian

H ≡ 1
2 (ẋ2 + ẏ2 + x2 + y2) + x2y2 = E (4)

that has A = B = 1 and a quartic non-linear coupling.
In section 3 we consider the case investigated by Hénon and Heiles, namely A = B = 1

and

H ≡ 1
2 (ẋ2 + ẏ2 + x2 + y2) + x2y − 1

3y3 = E. (5)

In section 4 we consider the Hamiltonian

H ≡ 1
2 (ẋ2 + ẏ2 + Ax2 + By2) − xy2 = E (6)

with A = B = 1 (case (6a)) and A = 1.6, B = 0.9 (case (6b)). In the latter case the
frequencies are resonant, with a ratio 4:3.

In section 5 we consider the integrable case A = B = 1 and

H ≡ 1
2 (ẋ2 + ẏ2 + x2 + y2) − x2y − 2y3 = E (7)

found by Bountis et al (1982). In this case an explicit polynomial expression of a first integral
independent of the Hamiltonian is known.

In all cases a formal first integral independent of the Hamiltonian is calculated using the
computer program implemented by Giorgilli (1979), making the appropriate expansion for the
resonance

√
A:

√
B = 1:1 in cases corresponding to equations (4), (5), (6a) and (7), and for

the resonance
√

A:
√

B = 4:3 in case (6b). A first quantity that can be defined numerically is
an overall optimal order evaluated by comparing orbits of the Poincaré mapping on a surface
of section and the level surfaces of the first integral on the same surface (Contopoulos and
Moutsoulas 1965, Gustavson 1966). A particular calculation refers to the periodic orbits
found by means of the truncated formal integrals as compared with the exact periodic orbits
(Contopoulos 1968).

Such calculations may give the feeling that the formal integrals are in fact convergent,
because the formal results give good approximations to real invariant curves, or they seem to
converge to some final form even when the true orbits exhibit a chaotic behaviour. This was
indeed the remark of Kaluza and Robnik concerning the Hamiltonian (5) of Hénon and Heiles.
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However, we will show that if one pushes the expansions to higher orders, then the divergence
of the formal series shows up, since the results become worse and worse.

A more quantitative evaluation of the optimal order N is performed by determining N as
the order at which the variations DI of the formal integral I along an orbit of the system are
minimal. In all non-integrable cases with a 1:1 resonance (cases (4), (5) and (6a)) N turns out
to be a rather smoothly decreasing function of R. However, in the case (6b) of the resonance
4:3 we find that N(R) decreases with abrupt steps. These results have been found also in other
numerical experiments, not described in detail here. Thus, the present exploration seems to
reflect the generic behaviour of N(R).

As regards the integrable system (7), Kaluza and Robnik (1992) noted that a formal
integral calculated via the Birkhoff normal form did not reproduce exactly the real invariant
curves of the Poincaré surface of section. This fact is explained in section 5. It is found that
the formal integral defined by the normal form method is a function of the Hamiltonian and
of the known polynomial first integral, but is expressed as a power series in the canonical
variables that need not converge in the whole phase space. A domain of convergence of this
function is estimated numerically by considering the radii of convergence along particular
directions, as evaluated with the classical methods of analysis (section 6). It is then shown
that the theoretical invariant curves derived by means of the formal integral coincide with
the true invariant curves only within the domain of convergence of the formal series for the
first integral. We emphasize that approximate radii of convergence may be estimated for the
non-integrable cases as well, but they appear to tend slowly to zero as the truncation order
increases.

The general conclusions from these experiments are summarized in section 7.

2. Hamiltonian (4)

The structure of orbits in this Hamiltonian has been studied in detail by Contopoulos et al
(1994). This Hamiltonian does not have an escape energy, therefore the orbits remain bounded
for arbitrarily large energies. The y-axis is a periodic orbit that is represented by the central
point (x = ẋ = 0) on the surface of section (x, ẋ). This orbit is stable for small energies. As
the energy increases, this orbit becomes unstable and then alternatively stable and unstable an
infinite number of times.

In the present paper we consider a formal second integral, for small values of the energy
H = E.

The Poincaré map of the Hamiltonian (4) on the surface of section (SOS) y = 0 for the
energies E = 0.4 and 0.8 is shown in figures 1(a) and 2(a) respectively. Besides the central
periodic orbit (x = ẋ = 0), there are three more basic periodic orbits:

(1) The orbits B1, B2 at x = 0, ẋ = ±ẋB above and below the centre. These orbits are stable
for small energies and unstable for larger energies (E > 2.367).

(2) The orbits C1, C2 at ẋ = 0, x = ±xC on the left and right of the centre. These orbits are
always unstable and generate more and more chaos around them as the energy increases.

(3) The orbit y = ẏ = 0, which is represented in figures 1(a) and 2(a) by the boundary
ẋ2 + x2 = 2E. This has the same properties as the central orbit (x = ẋ = 0), and changes
from stability to instability at the same values of E.

The second formal integral in this case is

� = 1
2 (ẋ2 + ẏ2 + x2 + y2) + 5

8x2y2 − 1
8x2ẏ2 − 1

2xyẋẏ − 1
8y2ẋ2 − 3

8 ẋ2ẏ2 + · · · . (8)

It contains only even order terms because of the symmetry of the potential.
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(a) (b)

(c) (d )

Figure 1. Poincaré SOS (x, ẋ) (i.e. y = 0) for the Hamiltonian (4) and E = 0.4.

The theoretical invariant curves are derived by introducing the value

ẏ2 = 2E − ẋ2 − x2 (9)

derived from equation (4) for y = 0, into equation (8).
Then, if y = 0 we derive

2� = 2E + 1
8 (x2 + 3ẋ2)(2E − ẋ2 − x2) + · · · . (10)

For various initial conditions (x, ẋ) we derive curves like those of figures 1(b) and (c) for
E = 0.4 and various truncations of the second integral. Namely the invariant curves for
a truncation at order N = 10 (figure 1(b)) have some similarities with the real invariant
curves of figure 1(a), but also some important differences (e.g. the orbits B1, B2 are unstable
in figure 1(b)). The agreement is much better when the truncation is at order N = 20
(figure 1(c)) but the deviations are very large if N = 30 (figure 1(d)).

In the case E = 0.8 the Poincaré SOS is shown in figure 2(a). In this case we see chaotic
regions around the unstable periodic orbits C1 and C2 which also surround the central invariant
curves and the invariant curves around B1 and B2. The theoretical invariant curves when the
second integral is truncated at order N = 8 (figure 2(b)) are qualitatively similar, but without
any chaos. The results are completely different when the truncation is at order N = 10
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(a) (b)

(c) (d )

Figure 2. As in figure 1 for E = 0.8. (a) Numerical results (chaos appears around C1 and C2).
Theoretical invariant curves for: (b) N = 8, (c) N = 10 and (d ) N = 12.

(figure 2(c)) in which case the theoretical periodic orbit at C1 and C2 is stable while the
theoretical central periodic orbit at O is unstable. Agreement is found again at order N = 12
(figure 2(d)). There is also some agreement at orders N = 16, N = 20 while the agreement is
bad at orders N = 14, N = 18. Bad results also appear for larger orders of truncation.

An estimate of the constancy of the second integral is made by giving the variation of the
integral DI = Imax − Imin truncated at various orders, along certain orbits. In figure 3 we
give the variation DI as a function of the order of truncation N for orbits with various initial
conditions along the x-axis with y = ẋ = 0 and ẏ specified by the constant energy condition
E = 0.4. We see that DI decreases smoothly with increasing N up to an optimal value of N;
then, for larger N, the error DI increases.

When x increases up to a certain maximum, the optimal value of N decreases and the
minimum value of DI increases. For larger x the optimal N increases again and the minimum
DI decreases. This is due to the fact that these values of x are close to the boundary
ẋ2 + x2 = 2E, which represents the stable periodic orbit y = 0, which has the same properties
as the central periodic orbit x = 0. The uppermost curve refers to x close to the unstable
invariant point C2.
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Figure 3. The variation DI = Imax − Imin of the formal integral I, in the case of the Hamiltonian
(4) truncated at various orders N, for various values of x, and y = ẋ = 0 (E = 0.4 = const). The
dashed line corresponds to the curve for x = 0.6 but for a much shorter integration time.

For x close to the points C1 and C2 (e.g. x = 0.6), a reliable estimate of DI requires a
long time of calculation (t = 2 × 104, solid line x = 0.6 in figure 3). If the time is short
(t = 103, dashed line with x = 0.6), then the values of DI vary in an oscillatory way and
the minimum value of DI is smaller. On the other hand, for smaller x (e.g. x = 0.2 in
figure 3) and also for larger x the increase of the time of calculation does not appreciably
change the results. Therefore, one has to find the correct minimum DI by checking if its
variations remain the same as the time of integration of an orbit increases.

Figure 4 gives the minimum variation DI as a function of ẋ for various values of the
energy E. We find that, as the distance from the centre increases up to a maximum, the variation
DI becomes larger. For E = 0.4, 0.6 and 0.8 and for smaller ẋ, the variations of log(DI) are
almost linear with respect to log(ẋ) but for larger ẋ they grow less than linearly. For larger
ẋ the variations decrease again. This is explained because the invariant curves for ẋ > 0.4
are closed around B1, thus a value of ẋ > ẋB gives the same orbit with a corresponding value
of ẋ < ẋB . The maximum DI as a function of ẋ has a maximum at ẋ = ẋB , corresponding
to the stable periodic orbit B1. However, for E = 0.2,DI has a local minimum at ẋB . The
transition from a maximum to a local minimum occurs near E = 0.27.

Figure 5 gives the optimal order N, as a function of the distance R from the centre along
the line x = y and ẋ = ẏ = 0. Our calculations of the integral series were stopped for
R < 0.58 at order 60, which is the highest optimal order found in this figure. For R larger
than R = 0.58, we find that the optimal order N decreases as R increases, approximately as
a power law. This fact is in agreement with the asymptotic character of the series, predicted
by Nekhoroshev’s (1977) theory. (The plateau for small values of R is due to the truncation
of the series at order 60.) We also calculated the minimum DI as a function of the optimal
order N. DI decreases with increasing N and the variation of log(DI) with log N is almost
linear.
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Figure 4. The variation of the minimum DI as a function of ẋ for x = y = 0 and various values
of the energy E.

Figure 5. The variation of the optimal order N as a function of R.

3. Hénon–Heiles case (5)

This model has been used extensively since the original Hénon–Heiles paper (1964). It is well
known that for energies smaller than a critical value Ecrit = 1/12, the chaotic regions are very
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(a) (b)

(c) (d )

Figure 6. Poincaré surfaces of section (as in figure 1) for the Hénon–Heiles Hamiltonian (5) and
E = 1/12. (a) Numerical orbits. Invariant curves derived from the second integral truncated at
order: (b) N = 20, (c) N = 30 and (d) N = 40.

small (figure 6(a)). For a larger value E = 1/8, chaos is appreciable (figure 7(a)) and for still
larger energy (E = 1/6) chaos is dominant.

A comparison between the exact invariant curves on a Poincaré SOS and the invariant
curves calculated by means of a truncated second integral was made by Kaluza and Robnik
(1992). However, these authors stopped their calculations at a maximum order of truncation
N = 14. They found that in the case E = 1/12, the theoretical invariant curves represent
quite accurately the real invariant curves. No evidence for divergence was found. In the
case E = 1/8 the theoretical invariant curves seemed to converge as the order of truncation
approached N = 14, although in some cases the convergence was slow. On the other hand, the
theoretical invariant curves could not represent the chaotic domains in the strongly chaotic case
E = 1/6. Nevertheless, convergence seemed to exist even in some chaotic regions. Kaluza
and Robnik (1992) noted that for small energies the second integral seemed to converge, while
for larger energies the second integral might still converge in some regions.
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(a) (b)

(c) (d )

Figure 7. As in figure 6 for E = 1/8. (a) Numerical results (some chaos appears near the unstable
periodic orbits). Invariant curves for: (b) N = 20, (c) N = 30 and (d) N = 40.

However, the non-convergence of the second integral is manifest even in the case
E = 1/12 (and also E = 1/8) if we truncate the second integral at higher orders. In
figures 6(b), (c) and (d) we show the theoretical invariant curves when the second integral is
truncated at orders N = 20, N = 30 and N = 40, respectively. We see that the agreement
with the real invariant curves of figure 6(a) is good for truncation orders N = 20 and N = 30
but it is inappropriate for relatively large x if N = 40.

In the case E = 1/8 the agreement with the SOS (figure 7(a)) is fair (except in the chaotic
domain) for a truncation order N = 20 (figure 7(b)) but it is bad for N = 30 (figure 7(c)) and
still worse for N = 40 (figure 7(d)).

Finally, in the case E = 1/6 chaos is dominant. In this case we find that all truncations
give very bad results, as expected, because most of the phase space is covered by chaotic
orbits.

The variations DI as functions of the order N of truncation, for points with increasing
distance from the centre (0, 0) in the Hamiltonian (5), show a similar qualitative behaviour as
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Figure 8. As in figure 5 for the Hamiltonian (5).

in figure 3 for the Hamiltonian (4). Namely, as the order increases the variation DI decreases
initially to a minimum variation for an optimal order of truncation N. Then, DI increases for
N larger than this optimal order.

The optimal order N as a function of the distance from the centre is given in figure 8.
The order N decreases as the distance R increases, in agreement again with the Nekhoroshev
theory. In this case, the decrease is rather smooth until R reaches high values corresponding
to the initial conditions of chaotic orbits. In fact, we can define an average logarithmic slope
in the smooth part of the curve of figure 8.

The minimum DI for the optimal N decreases with increasing N. The decrease of DI

with N is smooth, and has a good exponential slope.

4. Hamiltonian (6)

The case (6a) (A = B = 1) has been studied in detail by Contopoulos and Moutsoulas (1965).
For small energies (e.g. E = 0.05, figure 9(a)) there is practically no chaos. The invariant
curves close either around the unstable central invariant point A, or around one of the stable
invariant points B or C.

For larger energy (e.g. E = 0.1, figure 9(c)) there is some chaos around the unstable orbit
A, but there are still closed invariant curves around A,B or C.

The ‘third’ integral in this case has a resonant form (Contopoulos and Moutsoulas 1965).
The level lines of the ‘third’ integral, truncated at order 20, are given in figures 9(b) and
(d). The agreement with the corresponding empirical invariant curves (figures 9(a) and (c)) is
very good, except in the chaotic domain near the unstable periodic orbit in the case E = 0.1
(figures 9(c) and (d )).

The variation DI of the integral I truncated at various orders N, as a function of N for
various values of R (with ẋ = ẏ = 0), shows the same qualitative behaviour as that of figure 3
for the Hamiltonian (4). Namely, as N increases the values of DI initially decrease, but for
larger N they increase. The minimum DI occurs at particular values of N (figure 10) that
decrease rather smoothly as R increases.
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(a) (b)

(c) (d )

Figure 9. Poincaré surfaces of section (as in figure 1) for the Hamiltonian (6) with A = B = 1
and (a) E = 0.05, (c) E = 0.10. (b) and (d) are the corresponding level curves of the second
integral truncated at order N = 20.

The Hamiltonian (6) for A = 1.6, B = 0.9 (case (6b)) has been studied extensively
by Contopoulos (1960, 1963). In this case the Hamiltonian is not symmetric around the
point x = 0. It has a stable central periodic orbit for relatively small values of E, as in
figures 11(a), (b) and (c). (For larger E this orbit becomes unstable.) Because of the resonance√

A/
√

B = 4/3, there are also three islands of stability around the central periodic orbit.
There is also a triple unstable periodic orbit represented by three points between the three
resonant islands. This unstable orbit generates chaos in its neighbourhood by its homoclinic
tangle. The chaotic regions are very small in figures 11(a) and (b), but they are large in
figure 11(c).

Figure 12 gives the variation DI of the integral I, as a function of N, for various values of x
(and ẋ = ẏ = 0). The values of DI initially decrease on average with N, while later, for larger
N, they increase on average. However, there are some local minima of DI at particular values
of N. In figure 12 we notice three main minima for N = Nres = 14, 30 and 43, independently
of the value of x.
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Figure 10. As in figure 5 for the Hamiltonian (6) with A = B = 1.

Figure 13 gives the optimal truncation order of the integral I as a function of R =
√

x2 + y2

for various initial conditions along the line x = y and ẋ = ẏ = 0. We find that N is a
decreasing function of R. In this case the decrease is not smooth but abrupt. Namely, for
0.345 < R < 0.45, the optimal order of truncation is 43. Then for 0.45 < R < 0.49, N goes
abruptly to the value N = 30. For still larger R, i.e. R > 0.49, N falls abruptly again to the
value N = 14. The minimum DI decreases as N increases. Again, the change is abrupt.

The steps of figure 13 are due to the form of the curves of figure 12. Namely, in figure 12
we see that, for each value of x, only one of the three local minima at N = 14, 30 and 43 is the
global minimum of the curve DI . For relatively small x, the global minimum DI is the one
at N = 43, and this remains the global minimum as x increases a little. But beyond a certain
value of x, this minimum DI becomes only a local minimum, while the global minimum is
shifted to N = 30. This value of N continues to be a global minimum for increasing x until
the place of the global minimum changes again abruptly and it is taken by the minimum at
N = 14 (while the minima at N = 30, 43 are now only local minima).

It is to be noticed that this stepwise increase of the overall minimum DI as a function of
N appears only in the resonance ω1/ω2 = 4/3 and not in the resonance ω1/ω2 = 1/1.

We have found a similar stepwise increase of DI in the case ω1/ω2 = 4/3 and H1 = x2y2.
On the other hand, a smooth variation of DI with N appears in all cases with A = B = 1, even
if the coupling term H1 changes considerably. Such are the cases (4) (where H1 = x2y2), (5)
(where H1 = x2y − y3/3), and (6b) (where H1 = −xy2).

Similar results appear in cases close to the resonances ω1/ω2 = 4/3 and ω1/ω2 = 1/1
and also close to higher order resonances.

5. Integrable model (7)

In this case there is a second exact integral (Bountis et al 1982) namely

I = 3(ẋ2 + x2) − 4x2y + 4ẋ(ẋy − ẏx) + x4 + 4x2y2. (11)
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(a)

(b) (c)

Figure 11. Poincaré surfaces of section (as in figure 1) for the Hamiltonian (6) with A = 1.6, B =
0.9 and (a) E = 0.08, (b) E = 0.11, and (c) E = 0.14.

On a surface of section x = 0, we have

ẋ2 = 2E + 4y3 − y2 − ẏ2 (12)

and

I = ẋ2(3 + 4y). (13)

If we insert the value ẋ given by equation (12) in equation (13), we find the equation of
the invariant curves,

ẏ2 = 2E + 4y3 − y2 − I

(3 + 4y)
(14)

for fixed E and various values of I. In particular, one can find the periodic orbits and the
boundary ẋ2 = 0 on the Poincaré surface of section.

A particular case, studied numerically by Kaluza and Robnik (1992), is with E = 0.004.
In this case the exact orbits give the invariant curves of figure 14(a). The theoretical invariant
curves given by equation (14) agree completely with the empirical curves.
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Figure 12. As in figure 4 for the Hamiltonian (6) with A = 1.6 and B = 0.9.

Figure 13. As in figure 5 for the Hamiltonian (6) with A = 1.6 and B = 0.9.

However, if we use the computer program of Giorgilli (1979), we find a disagreement
between the invariant curves derived by the truncated formal second integral and the true
invariant curves. The disagreement is more pronounced at high truncation orders (e.g.
figure 14(b) for N = 50), and it appears for x � 0.083.

This disagreement can be explained by remarking that Giorgilli’s program gives the formal
integral IF only after the construction of Birkhoff’s normal form. This construction gives the
formal integral as a power series of the action variables of the non-linear system. For an
integrable system, this series is convergent in some neighbourhood of the origin, but may
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(a) (b)

Figure 14. Poincaré SOS (y, ẏ) (i.e. x = 0, ẋ = 0) for the Hamiltonian (7) and E = 0.004.
(a) Numerical orbits. (b) The exact invariant curves (level curves from the exact integral
(equation (14), dashed lines) deviate from the level curves of the formal integral IF (solid lines)
for y > 0.083.

not converge for large values of the variables. In general, it is only expected that the formal
integral IF is a function

IF = IF(H, I) (15)

of the Hamiltonian H and of the exact integral I. We have checked that, indeed, the formal
integral found by the method of Giorgilli (1979) is of the form of equation (15) within the
limit of the truncation order of our calculations.

In order to check the convergence of IF we calculated, as in the previous sections, the
logarithm of the variation of the truncated integral log(DI) as a function of the order N for
various values of x (and ẋ = 0).

Figure 15 gives the values of log(DI) for x = 0.02, x = 0.04, x = 0.07, x = 0.08, x =
0.09 and x = 0.1. We see that for small x, the values of DI go to the limit of accuracy of our
calculations (10−11) rather fast (for orders of truncation N = 18 and N = 27, respectively, for
x = 0.02 and x = 0.04). For x = 0.07 the convergence is slower and DI has not yet reached
the limiting value 10−11 at N = 50. Nevertheless, the value of DI is smaller than 10−8, i.e.
the accuracy is sufficiently good.

On the other hand, for x = 0.09 and x = 0.1 the value of DI increases with the order N.
Therefore, no convergence is possible for x equal to or larger than 0.09. In the case x = 0.08
the value of DI changes little for large N. This is because this value of x is close to the radius of
convergence x0 = 0.083 (see next section). In fact, for x < x0 = 0.083 we have convergence,
although slow, while for x > 0.083 we have divergence of the formal integral.

In figure 14(b) the arrow marks the radius of convergence y = 0.083. We see that some
theoretical invariant curves cross this line. These curves are turned rather abruptly for larger
x and they are different from the real invariant curves of figure 14(a), represented by dashed
lines in figure 14(b). Therefore, the theoretical curves derived from IF (truncated at order 50)
are not accurate, and in fact they do not agree with the exact theoretical invariant curves
that are derived by means of the exact integral I. Nevertheless, for 0.033 < x < 0.09 the
deviations DI of the integral IF are smaller than 10−4 if the integral is truncated at order
N = 50 (although for x = 0.09 they diverge for N → ∞), thus the expected variations of



Non-convergence of formal integrals of motion 8655

Figure 15. The variation DI of the formal integral IF as a function of the order N in the case of
the Hamiltonian (7) for E = 0.004 and various values of x. The functions IF (N) tend to zero as
N → ∞ for y � 0.08, but they diverge for y � 0.09.

the theoretical invariant curves are not very large. However, orbits starting beyond x = 0.9
give theoretical invariant curves that deviate appreciably from the exact invariant curves. These
deviations demonstrate clearly the inappropriateness of the integral IF for values beyond the
radius of convergence.

6. Radius of convergence

One may try to evaluate a ‘pseudo-radius of convergence’ R0 using the known methods of
analysis. Having fixed a direction in the phase space, we evaluate two successive terms of the
series I at a fixed distance R from the origin. According to the d’Alembert criterion, in the
limit N → ∞ we should have

RIN−1

IN

→ R0. (16)

Similarly, according to the Cauchy criterion we have

R
N
√

IN

→ R′
0. (17)

If the series is convergent, then R0, R
′
0 represent in both cases the radius of convergence.

If the series is not convergent but has an asymptotic character, then the application of the
above criteria to the first terms of the expansion may appear to converge to some limit, which
we call ‘pseudo-radius of convergence’.

In a simple example of a series representing a formal second integral of motion, Servizi
et al (1983) found that the functions of this form decrease in steps as N increases and tend
to zero. This result shows that the series are not convergent for any value of R different
from zero. The step form of the function is due to the appearance of small divisors. In fact,
the series giving the second integral has terms with divisors of the form (m2A − n2B), and
these divisors approach zero arbitrarily closely when m and n take appropriate values. In the
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Figure 16. The pseudo-radius of convergence derived by the Cauchy and d’Alembert methods as
a function of the order N for the Hamiltonian (4).

case of an exact resonance (e.g. A = B), the construction of the formal integral avoids the
obvious zero divisors, but terms with small divisors appear from time to time. When a term
with a small divisor appears for the first time in the formal series, the values of the quantities
R0 = (RIN−1/IN) and R′

0 = R N
√

IN decrease abruptly and a step appears in each function R0

or R′
0.
In the following figures we calculate the radii R0 (d’Alembert method) and R′

0 (Cauchy
method) as functions of N. In practice, for the d’Alembert criterion we considered the ratio of
every two successive orders, namely

R0 =
√

R2IN−2

IN

(18)

because in some models only the even order terms appear in the integral series. It should
be noted that the value of R0 or R′

0 varies with the particular direction from the centre along
which R is calculated. In figure 16 we consider the particular direction x = y and ẋ = ẏ = 0.

Figure 16 gives the pseudo-radius of convergence for the Hamiltonian (4), as derived with
the Cauchy and the d’Alembert methods, as a function of the order N (equations (17) and (18),
respectively).

We note that the Cauchy method gives a value of R′
0 that varies rather smoothly with

N, slowly decreasing and tending presumably to zero. On the other hand, the value of R0

(d’Alembert) method has large oscillations, but decreases on average, also tending presumably
to zero.

Both functions R′
0 and R0 do not show any plateaux as in the case of Servizi et al

(1983). Similar results are found for the Hamiltonian (5) and for the Hamiltonian (6), both
for A = B = 1 and for A = 1.6, B = 0.9. In the last case the variations of R0 (d’Alembert
method) are very large.

The results are very different in the integrable case (Hamiltonian (7)) (figure 17). In this
case both functions R′

0 and R0 tend smoothly to the same limit (the real radius of convergence)
as N → ∞. The convergence is much faster with the d’Alembert method.
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Figure 17. The pseudo-radius of convergence derived by the Cauchy and d’Alembert methods as
a function of the order N for the Hamiltonian (7). In this case both R0 and R′

0 tend to a finite radius
of convergence.

An example shows why the d’Alembert method converges much faster than the Cauchy
method. Consider the function

I = a

1 − R
= a(1 + R + R2 + · · ·). (19)

The d’Alembert criterion gives
IN−1

IN

= 1

R
(20)

and we derive immediately (for any N, even for N = 1) R0 = 1.
On the other hand, the Cauchy criterion gives

1
N
√

IN

=
N
√

a

R
. (21)

This criterion gives limN→∞ N
√

a = 1, but the convergence is slow, unless a = 1. On the other
hand, the d’Alembert criterion gives R independently of the factor a.

In figure 17 we have taken y = ẋ = R while x = ẏ = 0. If we take other directions

ẋ = cy = cR (22)

on the plane (y, ẋ), we find different values of R0 for different directions c. Thus we calculate
the domain of convergence in the plane (y, ẋ). This is the interior of the thick line in
figure 18. The particular line c = 1 is shown as a straight line in figure 18 and its intersection
with the thick line gives a radius of convergence R0 = y0 = ẋ0 = 0.08.

If the value of c increases indefinitely, the line ẋ = cy tends to the axis y = 0. In this
case the calculation of R0 cannot be done directly from equation (16) because the odd terms
with y = 0 are zero. In this case only even order terms I2M exist. Thus with an obvious
generalization, we find√

I2M−2

I2M

= R0

R
. (23)

This formula is to be used also when y is close to zero (i.e. c is large).
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Figure 18. The region of convergence in the plane (y, ẋ) (thick line). The straight line is ẋ = y

and the elliptical-like line is given by equation (7) for ẏ = 0, x = 0 and E = 0.004.

The value of R0 is independent of the value of the energy E. However, it is possible to
also define the radius of convergence R = y as a function of ẏ on a Poincaré surface of
section (y, ẏ) for x = 0 and fixed E. This is done by using equation (7) with constant energy.
For example, if we set ẏ = 0 (and also x = 0) in equation (7) for E = 0.004, we obtain a
curve in the plane (y, ẋ). This is an elliptical-like curve in figure 18. The maximum value of
R = y for convergence on the Poincaré surface of section (y, ẏ) with ẏ = 0 is given by the
intersection of this curve and the thick line of figure 18. This gives a radius of convergence
R0 = x0 = 0.083 which is indicated by an arrow in figure 14(b).

In a similar way we can find the radius of convergence R = y for any value of ẏ on the
Poincaré surface of section x = 0, E = 0.004. This defines the domain of convergence of the
formal integral on the Poincaré surface of section, which is limited by the thick line of
figure 14(b). Only within this domain do the formal integral curves (solid curves in
figure 14(b)) coincide exactly with the real integral curves (dashed curves).

7. Conclusions

We consider formal integrals in simple 2D conservative dynamical systems. Our conclusions
are the following.

(1) The formal integrals are not convergent in non-integrable cases. However, for relatively
small energies, truncated forms of these integrals can be used in various applications as
good approximations. In particular, one can find approximately the forms of the invariant
curves on a Poincaré surface of section if there is not much chaos. We have checked
that these statements are true up to the accuracy of our numerical calculations in three
different systems consisting of two oscillators with a coupling term of the form x2y2, xy2

and x2y − y3/3 (Hénon–Heiles case).

(2) When the order of truncation increases beyond a certain order, the agreement is worse.
The claim that in some cases one finds convergent behaviour of the formal integrals for
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small energies is not correct. The apparent convergence disappears for large orders of
truncation.

(3) The variations of the formal integral DI = Imax −Imin (truncated at a given order N) along
an orbit depend on (a) the value of the energy, (b) the initial conditions and (c) the time
interval of the calculation. The value of DI has a minimum DI at an optimal order of
truncation N. This is independent of the time interval if this interval is sufficiently large.

(4) We studied the minimum value of DI as a function of ẋ for x = 0 on the Poincaré section
of the Hamiltonian (4), which has a particular symmetry around the centre, for various
values of the energy. This function is approximately exponential near the centre. The
exponent depends on the energy E. For relatively large x, the maximum DI for any fixed
E occurs at a resonant periodic orbit ẋ = ẋB . But for small x,DI has a local minimum
for ẋ = ẋB .

(5) The order N of the best truncation is a decreasing function of the distance R from the
centre. This is consistent with the Nekhoroshev theorem about the best truncation of
formal integrals. In some models (e.g. A = B and various forms of the term H1) the
decreasing function N(R) is smooth, with an average power law, while in other cases
(e.g. A = 1.6, B = 0.9) the decrease is in abrupt steps. This phenomenon may be related
to the particular resonant structure of each model.

(6) In an integrable case the computer algorithm does not always give the simplest form I of
the second integral; instead, it gives a function IF of I and of the energy E which may
or may not converge. The simplest form I gives exactly the empirical invariant curves.
However, the function IF gives correct results only up to the radius of convergence.

(7) A ‘pseudo-radius of convergence’ can be calculated by the d’Alembert method
(R0, found by taking the ratio of successive terms of the formal integral), or by the
Cauchy method (R′

0, found by taking the Nth root of the Nth term of the formal integral).
The pseudo-radius of convergence is a function of the order N. Its limit when N → ∞
is finite in integrable cases and zero in non-integrable cases. In non-integrable cases
the variation of R′

0 (Cauchy method) is smooth, while the variation of R0 (d’Alembert
method) is large. Both R′

0 and R0 tend slowly to zero.
(8) In an integrable case the Cauchy and d’Alembert criteria give a finite radius of

convergence. The convergence with the d’Alembert criterion is much faster than that
with the Cauchy criterion. We found a method to calculate the radius of convergence for
various energies and various initial conditions.
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